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COMMENT 

Some aspects of the boson-fermion (in)equivalence: a remark 
on the paper by Hudson and Parthasarathy 

Piotr Garbaczewski: 
Research Centre Bielefeld-Bochum-Stochastics, University of Bielefeld, D-4800 Bielefeld, 
West Germany 

Received 3 June 1986 

Abstract. We link the recently proposed unification of the boson and  fermion stochastic 
calculus with the general problem of boson-fermion equivalence (duali ty,  reciprocity, etc) 
for quantum fields. Even if via the Fock construction the common Fock space for bosons 
and  fermions can be introduced, it still does not allow for the unrestricted boson-fermion 
equivalence for field theory models. All local fermion field theory models thus have boson 
equivalents (violating the weak local con,mutativity condition for space dimension three).  
The reverse statement is not valid: not all boson models admit a pure fermion reconstruction. 

1. Fermion fields in the boson Fock space according to Hudson and Parthasarathy 

The quantum analogue of the theory of stochastic processes and stochastic differential 
equations is the theory of stochastic integrals and differentials with respect to basic 
operator processes. For its construction Fock representations of the CCR [ 13 and CAR 

[2-41 algebra were used, thus resulting in the boson and fermion stochastic calculus 
respectively. 

In  a recent paper [ 5 1  fermion annihilation and creation processes were explicitly 
realised in the boson Fock space as functions of the corresponding boson processes. 
The inverse construction of boson processes from the fermion ones is realisable as 
well, thus leading to the identification of the boson and fermion Fock space. 

We denote by X the boson Fock space over the Hilbert space h = L2( R + ) ,  and the 
representation of the CCR algebra is generated by operators: 

[b(s) ,  b * ( ~ ’ ) ] -  S ( S  -S’) 

[b(s) ,  b(s’)]- = 0 = [b*(s), b*(s‘)]- (1.1) 

b(s)*o= 0 Vs E R, Z. 

The differential form of the boson annihilation process is dB(s)  = b(s)  d s  and upon 
introducing the appropriate reflection process J = J ( s ) ,  s E R ,  the fermion processes 
can be introduced in X such that 

d F #  = J dB# dB” = J d F #  (1.2) 
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where 

d F ( s )  = a ( s )  ds  

[ a ( s ) ,  a*(s')]+=s(s-s') 

[ a ( s ) ,  a(s')l+ = 0 = [a * (s ) ,  a*(s')l+ 
(1.3) 

a(s)+o = 0 VSE R, 2. 

Let A(n, f )  denote the set {(sl ,..., s,,)E[O, t]": O S s l < s 2 <  . . . < s , S r } .  Lemma 4.1 
in [ 5 ]  states that boson and fermion processes of strength 4, 4 E &( R + ) ,  are related 
by the following formulae to their differential versions: 

r 

where 

(1.5) 

for the n x n matrix C. 

the familiar field theoretic expressions for Fock space vectors arise: 
The stochastic integrals in (1.4) can be converted to the Lebesgue integrals, so that 

r 
F*m,(t) .  . . Ff,,(f)cLo= J 

r 

det($i(sj))b*(sl) . . . b*(s,) dsl  . . . ds,Jlo 
S(f l .1)  

B ; , ( t ) .  . . B f , , ( t ) + , =  J 
A straightforward consequence of (1.6) is theorem 4.3 of [5] which identifies the 

fermion and boson Fock space, and allows for the conclusion that the existence of 
unitary stochastic evolutions driven by fermion and gauge noise is thereby reduced to 
an equivalent boson problem. 

per(k(s , ) )a*(s , ) .  . . a*(s , )  dsl . . . ds,+o. 
A(n,r)  

2. Representations of the CAR generated by representations of the CCR in Fock space: 
boson-fermion duality or non-duality? 

Since in the above the CAR and CCR algebra generators in the boson Fock space have 
a common cyclic (vacuum) vector, the construction of [ 5 ]  automatically falls into the 
framework of [6,7] which provides a universal solution to the problem of embedding 
the CAR algebra in the (bicommutant of) CCR algebra on the level of Fock representa- 
tions. It is thus also connected with the idea of the boson-fermion equivalence for 
field theory models: the two independent and, in fact, inequivalent lines of research 
should be mentioned here, that following Skyrme [8-111 and that arising from [6,7] 
and continued in [12-161. 
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In connection with the Fock space notion let us emphasise that commonly the same 
name is attributed to two a priori distinct spaces: the Hilbert space of Fock vectors of 
the form (1.6) which we denote 2 and the Hilbert space of sequences of n-point 
functions 9. These sequences stand for coordinates of Fock space vectors in the 
occupation number basis. By virtue of the above fermion and boson Fock space 
unification, the choice of the boson basis would give rise to symmetric functions, while 
that of the fermion basis would give rise to antisymmetric functions. However they 
are merely different representatives of the same Fock space vector. 

At this point the general study of [6,7] intervenes. Once a Fock representation of 
the CCR algebra over K (in general, K = L2( R ")) is given, i t  automatically induces a 
Fock representation of the CAR algebra in the boson Fock space, which (we cite the 
main theorem of [7]) 'acts iireducibly on the following subspace of 9= 9E : 9E = 
Q:=o E$s,K@'"', FE =Q;=" S , K @ " ,  KO= C. Here we have an orthogonal decomposi- 

tion .FE = hB@ SE, S,  denotes the symmetrisation operator in the nth tensor product 
space KO", E :  is a projection in KO", and its square root E, has the property to 
convert the antisymmetric functions into the symmetric ones: 

1 

2 

E , ( A , K @ " )  = E ~ ( S , K @ " ) ~  s,K@" (2.1) 
and conversely, provided the symmetric function gets no contribution from (1 - 

It means that in terms of (Fock) function sequences, fermion Fock space can be 
identified with a proper subspace of boson Fock space having a non-trivial orthogonal 
complement SB. This complement makes a real distinction between the Bose and 
Fermi cases, unless it is trivial (it happens due to the special nature of the test function 
space and some peculiarities of the construction in [5]). It is the main purpose of this 
comment to reveal the role of this complement when proceeding to the study of concrete 
field theory models. 

Let us make the following choice of K = L2(R1)  and let the integral kernel of E, 
be given as follows [17]: 

E :) S,  K @ ,. 

2 

E , ( s ~ ,  . . . , s,; t l , .  . . , t , ) = ( + ( S I , .  . . , s , ) ~ ( s ,  - t l )  . . . 6 ( s ,  - t , )  ( 2 . 2 )  
where 6 ( s  - t )  symbolises the Dirac delta, while (+(sl, . . . , s,) is the Friedrichs-Klauder 
[6] totally antisymmetric (sign) symbol: 

(+(%T(lh . , & ( n J  = ( - I ) =  st # ' J  (2 .3)  
where T denotes a permutation of indices. If for any pair of labels we have not satisfied 
si # sJ the symbol U equals 0. Upon exploiting the form (2.2) of E ,  the following 
expression arises for the n-particle fermion vector in the boson Fock space: 

a(fd* .  . . a(f,)*$o= 

b ( f ~ ) * .  . . b(f ,)*&= [ d s , . .  . [ d s , f l ( s l ) .  . . fn (Sn)b*(s l ) .  . . b*(s,)$o 

d s , . .  . dSnf l ( s l ) .  . . f n ( s n ) ( + ( s I , .  . . , s , )b*(sl) .  . . b*(sn)$o 

(2.4) 
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[b(f) ,  b(g)*l- = / ‘ f ( s ) g ( s )  d s  [b(f), b(g) l -  = 0 

a ( m 0  = 0 = b(f)$0 VfE L2[0, t ]  = LfOC(R+) .  

All integrations are carried out with respect to the Lebesgue measure. Hence if we 
specialise considerations to the n = 2 case (extensions to arbitrary n are straightfor- 
ward), we arrive at 

The contribution j,, = ( z  ds ,  dsz from the set of Lebesgue measure zero has been omitted 
(we made use of such omission possibilities in our model studies of [13, 17, 191). Let 
us mention that Klauder was the first [I81 to publicly state that, due to the Lebesgue 
measure involved, the fermion and boson transition amplitudes can be identified. 

In the second term we have s 2 < s ,  and hence ( ~ ( s , ,  s 2 )  = -1. If now we change 
the variables ~ ~ - s ~ J l , ~ , , ,  + and consequent lyf , (s l~f2(s i )~f i (s2)f i (s l )  we find 

d s d s2 ( fl ( s I f 2  ( s2) - fl ( si ) f i  ( s ) ) b * ( s 1 b * ( s2) CL0 a (fl 1 * a  ( fi) * $0 = / 
s, * ( 2  

= 1 ds l  ds2 det(f;(s,))b*(sl)b*(s2)$o (2.6) 
5 , < s :  

which is precisely one of the Hudson-Parthasarathy formulae. The other one arises 
due to 

b ( f l  ) * b ( f i  ) * $0 

= i ds l  1 ds2f l ( s l l f2 ( sz )b*( s l )b*( s2 )~~  

= 1 d s  I ds*(f,  ( s I If:( S? 1 + f l  ( d f 2 (  s I 1) b* ( s I 1 b * ( 32) $0 

d s  1 ds2 ( fi ( s 1 I f 2  ( s2 ) + fi ( 32 ) f r  ( si ) )U ( s 1 9 ~2 1 (+ ( s 1 , ~2 ) b * ( s i ) b * ( 32 ) 3 $0 

9 ,  < $2 

(2.7) 

provided we observe that (+(si, s2) = 1 because of s1 < s2 and omit the contribution 
from sets of Lebesgue measure zero. We have thus demonstrated that the unification 
of the boson and fermion stochastic calculus by Hudson and Parthasarathy involves 
what is in effect the special case of our CAR = CAR(CCR) construction [6,7]. 
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The use of Lebesgue measure guarantees a complete identification of boson and 
fermion Fock spaces not only when K = L'( R I )  but also in the case of K = 0;" L2( R N ,  
as well. However, one must keep in mind that Fock space vectors determine the 
corresponding function sequences up to contributions from sets of Lebesgue measure 
zero. If these contributions are not taken into account while passing to the study of 
field theory models, quite serious problems are apparently encountered. Recall that 
SB =$:=o S,K@" = ( 1  - E;)S,K@" piece is cancelled 
in the Fock construction which maps function sequences into vectors: 

(f"(S1,. ' e ,  s f l ) } +  If>=C [ ds1 * .  . [ dS,ffl(Sl,. . ., s,)b*(s,). * .  b*(sn)+o. (2.8) 

However, what happens if we act upon such vectors by operators? To clarify the 
situation we shall discuss one paradigm example of the concrete field theory model 
we have studied before [ 171 in search of mechanisms of the fermion-boson reciprocity: 
the non-linear Schrodinger field in (1 + 1 )  dimensions, with a repulsive potential (now 
a configuration space variable appears instead of the previously used time variable 
s E R ) .  The spectral solution for the Hamiltonian: 

1 2  2 
,FB and the SB 

H = -4 dx 4:4x + i c  dx ~$*(x )~C$(x )~  

[4 (x ) ,  4(Y)l- = 0 (2.9) 

I I 
[4 (x ) ,  4 ( Y ) * I -  = S(x - Y )  
C$(X)90 = 0 V X E  R 

is looked for in the Fock space ~ ( X ) J / ~  = 0 Vx E R. According to our previous analysis 
(we omit the contributions from sets of Lebesgue measure zero) the n-particle vector 
acquires the following form: 

4( f i )*  * . .  4(fn)*J/o= [ dxi . . . [ dx,, per(f;(x,))9*(xl). . .4*(x, ,)9, .  (2.10) 
x, < ... <x,, 

If  one would perform H of (2.9) naively upon (2.10), we would realise that on all 
Fock space vectors (vary n )  the interaction term identically vanishes, thus reducing 
the non-trivial model to the free field case which is known to arise in the c = 0 limit 
(free boson) or c + CO (free fermion). 

By virtue of the boson and fermion Fock space unification these two free field 
models are equivalent (compare, e.g., [ 161) since the free boson Hamiltonian acts 
invariantly in any domain 9 c ,?FB. 

It is not the case when 0 < c <a, since then the proper domain for H is SB = 9,O 
1 

I 

9 s  : 

~f)= J d x l . .  . [ dx,f(xl,. . . , x,)4*(xl) .  . . 4*(x,,)J/o 

(2.11) 

x 4*(Xl) * .  . 4*(x,)lLo 

(Kf )(XI,. . . , X") = Ef(X1, . . . , x,,) 

shows that for the study of spectral properties the solutions of the eigenvalue problem 

(2.12) 
are necessary and the many-body Hamiltonian H,, non-trivially mixes SB and ,?FB in 9,. 

1 2 



1282 P Garbaczewski 

At this point let us recall that the standard (Gel’fand-Neumark-Segal) reconstruc- 
tion procedure by using the CAR algebra would give rise to the 9, piece only (9, is 
closed). If we adopt the CCR algebra reconstruction we would arrive at 9, = 9,O 9, 
and obviously 9, is beyond the reach of the previous (CAR) procedure. It clearly 
demonstrates that not all boson models allow for the pure fermion reconstruction (the 
reverse is always true); even if we pass from 9, to the Fock space X. 

It is impossible unless the boson Hamiltonian acts invariantly in 9,, i.e. commutes 
with the projection on this proper subspace of 9, = 9,O 9,. Then contributions from 
9, can be eliminated as irrelevant and the boson-fermion duality makes sense, albeit 
on the level of the relativistic field theory, the requirement of weak local anticommutativ- 
ity for fermions would necessarily lead to the violation of weak local commutativity 
for the related (dual) bosons. 

Remark 1.  The situation in continuum is entirely different from this for the lattice 
systems (even infinite), since the lattice analogue of the construction [6,7], see e.g. 
[ 131, involves a decreasing family of projections in the Fock space for the Bose system 
and its proper subspace of Fermi states is always accompanied by the non-trivial 
orthogonal complement, whose contributions can never be neglected: it is a subspace 
of the Fock space X itself. Consequently there is no way at all to give a fermion 
reconstruction of the Bose system (the reverse is always true) unless a restriction to 
the appropriate subspace is imposed, see also [20], or irreducibility of representations 
abandoned. 

I 1 

1 2  

2 

I 

1 2  

2 

Remark 2. For each Fermi system an equivalent Bose one can be found (irrespective 
of what is the spacetime dimension adopted). By virtue of the fact that the total set 
of exponential vectors (coherent states) spans the domain for equivalent Bose and 
Fermi systems, the standard tree approximation methods [ 131 allow us to attribute an 
unambiguous meaning to the notion of the classical relative for the Fermi system, 
which is a c-number (commuting function ring) field theory, unpleasant news for those 
field theory pragmatists who seriously claim that the classical level for Fermi fields is 
Grassmann algebra-valued. 
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